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INTRCDUCTION
We suggest that general systems theory ic Lhe —compruntive study of
formal models. To us this point seems both obvious and neglected, It

is obvious in the sense that general systems theory cveks to comprehend
similarities and ditferences among abstract systems. 1t is neglected in
the sense that study of classes of models hus not seen the systematic
emphasis that would appear necessary to provide the prospect of # data
base complete enough to give theoretical work broad scope.

In this paper we explicitly consider a class of systems defined
constructively, that is, not on the basis of the systems' behavior, but
in terms of properties of the parts constituting the systems, and the
structures which mediate their interactions. After defining the class,
we focus attention on a particular behavioral characteristic of the
systems, namely the length of the steady-state or cycle length. For
the given class of systems we then seek to provide the general systems
theorist with a degree of insight into 1) the distributional form of
the cycle length considered as a random variable under random structural
and initial-state variation, and 2) the effect of system size directly
on {average) cycle length and on other parameters of these distributional

models.

THE SYSTEMS EXAMINED

The particular class of systems we consider is the set of all
systems which are individually fixed in structure and built up from
functionally identical elements having two inputs and two internal
states. Additionally we assume our systems are not influenced by the

environment. The elements' next internal state is a determinate
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function of both the internal states and the input values existing at
each element at the present instant of idealized system time. The
elements' outputs carry the various elements' internal states. 1In
summary, our systems describe a subset of binary, autonomous, fixed
structure, deterministic, automata.

We have already outlined our reason for choosing a class of systems
for study--our conviction in the appropriateness of this approach for
the development of general systems theory. We will now try to Justify
the particular choice made. In that connection it is interesting that
while our biases toward study of relatively narrow classes of systems
stem from our perception of the field of general systems theory, these
biases are consistent with the research emphases of some late automata
theoretic writing [4,5].

In studying the defined class of systems we are in effect
recommending this class to the general systems theorist as a worthy
object of attention. There are, as we have mentioned, reasons related
to research strategy for this, but there exist substantive reasons as

well. Among fixed-structure models built of functionally heterogeneous

elements with the same number of inputs per element (K), Kauffman [3]
argues that biological applicability is maximized for XK = 2 ., The
criteria used by him for biological relevance, namely, relatively
localized steady-state behavior, resistance of steady-state behavior to
disturbance, and restricted possibilities of change among the different
steady-states available have wider significance. The first criterion
can be considered a demand that a system's steady-state at the very

least be empirically recognizable, The second criterion requires the




system to be behaviorally robust. The third criterion requires the
system to have constrained developmental opportunities. The second
and third criteria are clearly desirable in models of many biological
systems, and can be seen to apply in other areas as well. The important
first criterion appears close to a necessary condition in models for
any real-world system to which the term steady-state behavior has
empirical significance. Of course there are qualifications; it is not
asserted that a model of any real world phenomenon must be a network
of heterogeneous elements with two inputs. Rather we take Kauffman's
analysis as demonstrating the theoretically pivotal nature of the class
of network models for which K =2 .

Our own class of model systems differs from Kauffman's in having
functionally homogeneous elements (all elements in any one system are
identical) with two internal states rather than one. This class can
be finally justified by pointing to the value for theoretical develop-
ment of determining the behavior of simple, functionally "pure" systems,
leaving the study of the behavior of mixtures of elements (as in
Kauffman's systems) as a natural next step. We should alsoc point out
that elements with one internal state are included in our class.

The functional description of an element can be expressed in general
in the following form given in Figure 1, where entries a,b,...,h are
the next internal state, and next output state of the element. They
take on values O or 1 in any specific table. We will refer to a
specific table by interpreting the entries abcd and efgh as two
binary integers in the notation T{abcd,efgh). A system using the table
T(1001,0110) would be referred to as a T(9,6) system. The defining

table will also be called a transformation.
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FIGURE 1: Matrix Form of a Transformation

Present Internal State

0 1
0 O a ¢
0 1 b f
Present Input States
1 0 c g
11 d h

There are 28 = 256 different transformations. Therefore, there
are 256 functional types of systems in our class. Where attention is
restricted to length of behavior (steady-state or transient) these 256
types reduce to the 88 behavioral equivalence classes [6,7] for which
data are taken in this paper.

A specific system is formed by taking N elements which realize
the same transformation T and joining them so that all elements'
inputs are connected to outputs. While the behavior of that specific
system is observed, no changes are made in the structure (the pattern
of connections) or its function (T). We follow convention in referring
to the set of internal states of the elements of a given system as the
system state. It is clear that there are exactly 2N distinct system
states., It is also clear that if the system is started at an arbitrary
system state, it will step through a (possibly void) set of transient
states before reaching its steady-state, a set of states through which
it will continuously cycle, The number of states in this cycle is the

cycle length V , 1<V :_2“ . By system size we mean the value of N .
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PROCEDURE

As proposed in the introduction, we will now develop & model for
the distribution of cycle lengths. In the process we will garner con-
siderable insight intc how system size affects cycle length. First of
all, a clarification with respect to the notion of a distribution of
cycle lengths is in order. For a given system size N , & given trans-
formation T , a fixed system starting state R , and a fixed set of
system connections C , the cycle length V is then specified in a
completely deterministic manner, as described in the previous section,
i.e., V =G(R,C,N,T) . However at a fixed N , the number of possi-

bilities for choosing R is 2N and the number of possibilities for

choosing C is N2N so that the process of investigating the function
G for each of 88 choices of T with varying choices of N is
computationally infeasible. Hence to make this examination tractable

we resort to an artifice; R and C are selected ut random, i.e., such
that each possible starting vector R 1is equally likely and has a 1/2N
chance of selection and each choice of connections C is equally likely
with 1/1‘12N chance of selection., Since R and C are random, V will
now be random as well and a distribution of V exists in that sense.
For N = 2 the exact distribution of V can be readily obtained given
T . This case will be considered shortly. The problem of calculating
the exact distribution of V for N=3 or U4 is immense, and for
larger N 1is intractable. Moreover, we do not intend to attempt a
transformation of variables to obtain V's distribution since the func-

tion G at a fixed N and T appears hopeless to describe. Nor is it

clear for our purposes that we necessgarily want the exact distribution




of V at each N and T . Rather, since V's distribution now
depends only on the parameters N and T , we would prefer to describe
a family of density functions fv(v;N,T) which seem to effectively
describe V's behavior and which over varying T's allow us to examine
the dependence of V's distribution on N .

Before we delve more deeply into this question we pause to briefly
consider the case for N = 2 . In this case there are U4 possible
starting configurations and 16 possible connection sets, so that there
are but 64 possible R and C choices, each with likelihood 1/6k of
being selected. The sample space for V is {1,2,3,4} . As an example,
the transformation T(9,6) was examined and yielded P(V=1) = 7/8 ,
P(v=2) = 1/8 , P(v=3) = P(V=b) =0 .

The remaining 87 distinct transformations could similarly be
examined, but there seems to be little gain in this. Instead we turn to
the more interesting situation with general N . Employing the notions
of randomness described above and using the computer, we obtained 100
observations from each of the cycle length distributions given by the 88
distinet transformations taken with system sizes N = 4,5,...,17 , i.e.,
we examined 100 observations from each of 88 x 14 = 1232 distributions.
While 100 observations is hardly enough to develop a highly accurate
picture of each of these distributions, it is enough Lo reveal their
general behavior, particularly with regard to varying N , which, as we
mentioned above, is a primary concern. A preliminary examination of our
results indicates that the 88 transformations can be more or less
clagsified into two major groups; those which are essentially degenerate

over N and those which exhibit changing, often rather volatile, behavior
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over N . The former group is largely made up of transtormations which
exhibit almost trivial behavior in the sense of yielding cycle lengths
vwhich are virtually always one, virtually always two, or a relatively
stable proportion of one's and two's regardless of N . The latter group
contained transformations which clearly seemed to be varying {increasing)
in N and as N grew larger occasionally resulted in cycle lengths of
the order of th . We note that at a given N the maximum cycle length*
is 2N and is of order th for N 2_lh . Moreover, for these more
volatile transformations several cycles lengths on the order of the maxi-
mum were observed even though our samples were only size 100 , indi-
cating that these lengths are not rarities but rather occurrences which
may be expected with some degree of regularity. Additionally for these
more interesting transformations, the maximums of the samples seemed to

be increasing exponentially in N analogously to the maximum cycle length.
These observations, coupled with an effort to achieve a more manageable
range for the data, led to a decision to make a logarithmic transformation
on the observations. The base of the log transformation is, of course,
not important since it provides nothing more than a scaling of the observa-
tions. For convenience, base ten was employed. Henceforth in all discus-
sion of cycle length we will implicitly refer to log cycle length.
Although the sample spaces of the observations are clearly discrete, as

a result of the log transformation and in the interest of mathematical

convenience we attempted to fit a continuous family of distributiomns to

the data. Noting that the distributions are bounded, and as they appeared

*The maximum cycle length actually depends on T as well and can never
exceed 2N-2, N>2, forany T.




to be more or less unimodal, we were naturally lei to the Pearson Type
II or generalized Beta family of distributions. Although these distri-
butions are ordinarily parametrized by four parameters, as a result of
our data transformation it is clear that the lower limit of the sample
space ought to be taken as zero. Thus we examined the family of three

parameter distributions whnse probability density ftunction is given by

-1 B-1
_ _T(a+B) v (Y=v)
fv(v)-I‘aI'B YO‘*B O<v<y

with a>0, £>0, Y>>0 .
The first three moments of this distribution are

= 2
V1 = a+B Yo

- alatl 2
M2 = Ta+B)(a+B+1) °*
b = ala+l ) (o+2 3
3 (a+8§la+s+151a+8+25 ?

and
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E(V) = n 5 .
(a+B)“ (a+B+1)

var(Vv) =

l 1]

If ml,m2,m3 are the first three sample moments, then we can obtain

three equations in three unknowns to solve for sample estimators of

a, B, Y . The equations are gotten by replacing ui by m i=1,2,3

i 1 ]
above, The solutions are
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Varying a , B and Y varies the skew and range of these distri-
butions. The pictures in Figure 2 describe the sorts of behavior possible
for the density function, fv(v) . Increasing vy , of course, primarily
expands the measurement scale although all the moments of the distribution
are increased, Changing o and f varies the shape of distribution.

For a fixed Yy increasing o (B) relative to B8 (a) increases (decreases)
the mean. By examining the variance expression it is apparent that if
either o or B or both grow large the variance or spread will be
decreased; but also if either a or B or both are made very small the
variance (spread) will be decreased. Thus for a fixed 7y making o (B)
large relative to B (o) increases the area to the right (left) of the
scale and making o (B8) small relative to 8 (o) increases the area to
the left (right) of the scale. As a result a distribution for which «
is very small relative to B will be essentially degenerate at 0 (an
extreme case of 1(a), 1(c) or 1(e) in Figure 2). Similarly a distribu-
tion for which o is very large relative to B will be essentially
degenerate at Yy (an extreme case of 1(b), 1(d) or 1(f) in Figure 2).

A distribution such that a and B are quite large but of the same
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FIGURE 2: Pearaon Type II Curves
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order of auwgnitude will be easentially degenerate ar  ay/a+f . Further
discuzsion of t.e properties of these curves is available in the refer-

s

ence texts [1,2].

RESULTS

Let us turn to an examination of our cycle length distributions in
terms of the above fumily of distributions. Theee distributions which
teni to be active (i.c., nondegencrate) were ususlly it by a curve of
the form 1(c) or 1{e) (occasionally !(f)) from Figure 1. The essentially
degenerate distributions were usually fit by extreme cases of 1(a) or
1{c) (where the cycle length was almost alwaye 1 so that the log cycle
length was almost always 0 ) or by extreme cases of 1{e) or 1(f), i.e.,
with a , B large so that the variance is small (where, for example,
the cycle length was almost always 2 sc that the log cycle length was
almost always .3010 ). There are several distributions which do not
seem to be at all well described by the model. The poor fit may be
explained by one or more of the following reasons.

(i) We are fitting a family of continuous distributions to
observations which are clearly rrom a discrete scale.

(ii) We have only n = 100 observations for each empirical
distribution--~hardly enough to insure that our empiricel
picture is close to the true underlying distributional
picture.

(i11) For some transformations, our proposed distributional
family mey be inappropriate. For these transformations

the true distribution may be too "discrete" (i.e., the
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possible log cycle lengths may not be dense enough
within the range) or may not be unimodal (i.e., the
generalized Beta family defines only unimodal distri-
butions).

Nonetheless for most of the transformaticns the results were rather
gratifying and indicate at least to some extent the appropriateness of
our model, In fact 70 of the 88 transformations taken over N
seemed to be well fit. Only 18 were badly described and these 18
might be fit better with larger sample sizes. Tuable 1 considers the
behavior of several of the transformations at various N's to illustrate
the above discussion.

We now return to the more pertinent question regarding the relation-
ship between system size and cycle length (equivalently log cycle length).
We first note that the question of goodness of fit of the distributional
models is separate from that of the behavior of cycle length with
increasing sample size. To further clarify this point there are four

possible situations as in Figure 3.

FIGURE 3: A Classification of Transformations

Cycle Length Behavior is Cycle Length Behavior

Strongly Related to N is Unrelated to N
Model Fits
Transformation I 11
Over N
Model Does Not
Fit Transforma-~ II1 Iv
tion Over N
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We expect that fuor most transformations increasing N will in
some sense increase cycle length. But it is also apparent that there
will exist transformutions which will produce cycle lengths which will
be independent of N . That is, certain transformations by their defi-
nition will result in short cycle lengths regardless of system size.

As a result there will be transformations in each of the four cate-
gories. Of course the column classification is not perfectly dichotomous.
While most of the 88 transformations could be comfortably classified
in one of the two categories, there were perhaps nine transformations
which required more data to conclude exactly where to place them. Not
surprisingly, most of these arose in situations where the model did not
fit the transformation well. Table 2 summarizes the categorization of
the transformations, including pleausible placements for the above nine.

If we wish to focus directly on the dependence of cycle length on
system size, it would make sense to examine and correlate with system
size certain characteristics of our samples such as the sample mean,
sample median, sample standard deviation and sample maximum. Although
the data are not continuous, & product moment correlation is likely to
be as effective as any other measure of association in this case. A
large positive correlation value will support the contention of strong
dependence of cycle length on system size while a correlation value near
zero (positive or negative) will indicate relative independence of cycle
length and system size. We would not expect large negative correlations.

More specifically, if for a particular transformation cycle length
is truly dependent upon system size then, in terms of the artificial

randomness we have created, the distribution mean ought to be strongly
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TABLE 2
A categorization of the transformations
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»2), (9,8), (10,0), (10,2), (10,4), (10,8), (10,10)

(7,1), (8,2), (8,8), (9
(10,12), (11,4), (11,8)

III
(13)

(7’0)’ (8’0), (9’0), (11)0)’ (11’2)

IVv:
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correlated with N . This should be true ot the listribution median as
well, although perhaps not quite so strongly since for discrete distri-
butions it may turn out that the median is monotcnically increasing in

N but not strictly. Further, if cycle lengths are affected by N we
might reasonably expect the upper bound on the sample space of the
distribution (which, of course, is not necessarily the maximum rossible
cycle length at a given N) to be strongly correlated with N . Finally,
the distribution variance need not necessarily be strongly correlated
with N . Even though increasing N 1leads to observing increasingly
larger cycle length measurements, the distributional spread as charac-
terized by variance may or may not be increasing. Additionally, since
the variation is artificially induced (by our arbitrary choice of an
equiprobable sampling regime) it is questionable as to how much interpre-
tation may be attached to it. Hence the pertinence of this final corre-
lation measurement to the question of the dependence of cycle length on
N is not assured. However, if the population variance is strongly
correlated with N , of necessity the space of observations must be
increasing in N so there will be some evidence of dependence. As a
result, the sample estimates of all of these distributional character-
istics ought to reflect these expectations as well.

Suppose in addition we are in Situation I and wish to examine the
effect of increased system size on the parameters of distributional model.
As we have discussed, the upper bound on the log cycle length space ought
to be increasing and in fact the mass of the distribution ought to be

moving to the right as well. This should be reflected in a parametric

dependence on N . In light of discussion in the previous section, an
16
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increase in y will achieve both these effects but additionally an
increase in o will also adjust the skew of the distribution. We would
not expect B to increase much if at all. As a result we would expect

9 to be most strongly correlated with N , o next and then 8 .

This was almost universally borne out by the data. In Situations II and
IV we would expect little correlation of N with any of our sample
characteristics or parameter estimates. Again this was usually true,
although for an occasional transformation a surprisingly large correla-
tion value with @ or é wvas obtained. After more careful examination
it became apparent that these values were obtained upcu correlating N
with estimates on the order of 10"6 or smaller., These estimates,
although perhaps slowly increasing in N , are still so small that the
cycle length distribution remains essentially degenerate over N and
hence is still essentially independent of N . In Situation III we expect
the parameter estimates to be weakly correlated with N while the sample
characteristics ought to be strongly correlated with N . Table 3
examines typical transformations in each of the above situations and
supports the preceding discussion.

Hence it is possible to conclude that for certain transformations
there is highly convincing evidence that cycle length is directly related
to system size. For others there is convincing evidence that essentially
no relationship exists and for very few is the evidence inconclusive.
Roughly 2/3 of the transformations are in the first case, approximately
1/4 in the second and the remaining 1/12 1n the last case. Again
perhaps additional data would allow us to resolve the ambiguities in the

last case.
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